metabelian, supersoluble, monomial
Aliases: C33⋊9M4(2), C12.72S32, C3⋊1(C24⋊S3), C32⋊4C8⋊14S3, (C3×C12).167D6, C33⋊5C4.4C4, C32⋊7(C8⋊S3), C6.8(C6.D6), C3⋊1(C12.31D6), (C32×C12).69C22, (C3×C3⋊C8)⋊8S3, C3⋊C8⋊5(C3⋊S3), C6.2(C4×C3⋊S3), C4.27(S3×C3⋊S3), C12.42(C2×C3⋊S3), (C32×C3⋊C8)⋊13C2, (C3×C6).47(C4×S3), C2.3(C33⋊8(C2×C4)), (C3×C32⋊4C8)⋊12C2, (C32×C6).36(C2×C4), (C2×C33⋊C2).4C4, (C4×C33⋊C2).4C2, SmallGroup(432,435)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊9M4(2)
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=ece=c-1, ede=d5 >
Subgroups: 1160 in 184 conjugacy classes, 48 normal (20 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, M4(2), C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C33, C3⋊Dic3, C3×C12, C3×C12, C3×C12, C2×C3⋊S3, C8⋊S3, C33⋊C2, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C32⋊4C8, C3×C24, C4×C3⋊S3, C33⋊5C4, C32×C12, C2×C33⋊C2, C12.31D6, C24⋊S3, C32×C3⋊C8, C3×C32⋊4C8, C4×C33⋊C2, C33⋊9M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, M4(2), C3⋊S3, C4×S3, S32, C2×C3⋊S3, C8⋊S3, C6.D6, C4×C3⋊S3, S3×C3⋊S3, C12.31D6, C24⋊S3, C33⋊8(C2×C4), C33⋊9M4(2)
(1 45 15)(2 46 16)(3 47 9)(4 48 10)(5 41 11)(6 42 12)(7 43 13)(8 44 14)(17 72 30)(18 65 31)(19 66 32)(20 67 25)(21 68 26)(22 69 27)(23 70 28)(24 71 29)(33 56 59)(34 49 60)(35 50 61)(36 51 62)(37 52 63)(38 53 64)(39 54 57)(40 55 58)
(1 22 61)(2 23 62)(3 24 63)(4 17 64)(5 18 57)(6 19 58)(7 20 59)(8 21 60)(9 29 52)(10 30 53)(11 31 54)(12 32 55)(13 25 56)(14 26 49)(15 27 50)(16 28 51)(33 43 67)(34 44 68)(35 45 69)(36 46 70)(37 47 71)(38 48 72)(39 41 65)(40 42 66)
(1 45 15)(2 16 46)(3 47 9)(4 10 48)(5 41 11)(6 12 42)(7 43 13)(8 14 44)(17 30 72)(18 65 31)(19 32 66)(20 67 25)(21 26 68)(22 69 27)(23 28 70)(24 71 29)(33 56 59)(34 60 49)(35 50 61)(36 62 51)(37 52 63)(38 64 53)(39 54 57)(40 58 55)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 6)(4 8)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(17 60)(18 57)(19 62)(20 59)(21 64)(22 61)(23 58)(24 63)(25 33)(26 38)(27 35)(28 40)(29 37)(30 34)(31 39)(32 36)(49 72)(50 69)(51 66)(52 71)(53 68)(54 65)(55 70)(56 67)
G:=sub<Sym(72)| (1,45,15)(2,46,16)(3,47,9)(4,48,10)(5,41,11)(6,42,12)(7,43,13)(8,44,14)(17,72,30)(18,65,31)(19,66,32)(20,67,25)(21,68,26)(22,69,27)(23,70,28)(24,71,29)(33,56,59)(34,49,60)(35,50,61)(36,51,62)(37,52,63)(38,53,64)(39,54,57)(40,55,58), (1,22,61)(2,23,62)(3,24,63)(4,17,64)(5,18,57)(6,19,58)(7,20,59)(8,21,60)(9,29,52)(10,30,53)(11,31,54)(12,32,55)(13,25,56)(14,26,49)(15,27,50)(16,28,51)(33,43,67)(34,44,68)(35,45,69)(36,46,70)(37,47,71)(38,48,72)(39,41,65)(40,42,66), (1,45,15)(2,16,46)(3,47,9)(4,10,48)(5,41,11)(6,12,42)(7,43,13)(8,14,44)(17,30,72)(18,65,31)(19,32,66)(20,67,25)(21,26,68)(22,69,27)(23,28,70)(24,71,29)(33,56,59)(34,60,49)(35,50,61)(36,62,51)(37,52,63)(38,64,53)(39,54,57)(40,58,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,60)(18,57)(19,62)(20,59)(21,64)(22,61)(23,58)(24,63)(25,33)(26,38)(27,35)(28,40)(29,37)(30,34)(31,39)(32,36)(49,72)(50,69)(51,66)(52,71)(53,68)(54,65)(55,70)(56,67)>;
G:=Group( (1,45,15)(2,46,16)(3,47,9)(4,48,10)(5,41,11)(6,42,12)(7,43,13)(8,44,14)(17,72,30)(18,65,31)(19,66,32)(20,67,25)(21,68,26)(22,69,27)(23,70,28)(24,71,29)(33,56,59)(34,49,60)(35,50,61)(36,51,62)(37,52,63)(38,53,64)(39,54,57)(40,55,58), (1,22,61)(2,23,62)(3,24,63)(4,17,64)(5,18,57)(6,19,58)(7,20,59)(8,21,60)(9,29,52)(10,30,53)(11,31,54)(12,32,55)(13,25,56)(14,26,49)(15,27,50)(16,28,51)(33,43,67)(34,44,68)(35,45,69)(36,46,70)(37,47,71)(38,48,72)(39,41,65)(40,42,66), (1,45,15)(2,16,46)(3,47,9)(4,10,48)(5,41,11)(6,12,42)(7,43,13)(8,14,44)(17,30,72)(18,65,31)(19,32,66)(20,67,25)(21,26,68)(22,69,27)(23,28,70)(24,71,29)(33,56,59)(34,60,49)(35,50,61)(36,62,51)(37,52,63)(38,64,53)(39,54,57)(40,58,55), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,60)(18,57)(19,62)(20,59)(21,64)(22,61)(23,58)(24,63)(25,33)(26,38)(27,35)(28,40)(29,37)(30,34)(31,39)(32,36)(49,72)(50,69)(51,66)(52,71)(53,68)(54,65)(55,70)(56,67) );
G=PermutationGroup([[(1,45,15),(2,46,16),(3,47,9),(4,48,10),(5,41,11),(6,42,12),(7,43,13),(8,44,14),(17,72,30),(18,65,31),(19,66,32),(20,67,25),(21,68,26),(22,69,27),(23,70,28),(24,71,29),(33,56,59),(34,49,60),(35,50,61),(36,51,62),(37,52,63),(38,53,64),(39,54,57),(40,55,58)], [(1,22,61),(2,23,62),(3,24,63),(4,17,64),(5,18,57),(6,19,58),(7,20,59),(8,21,60),(9,29,52),(10,30,53),(11,31,54),(12,32,55),(13,25,56),(14,26,49),(15,27,50),(16,28,51),(33,43,67),(34,44,68),(35,45,69),(36,46,70),(37,47,71),(38,48,72),(39,41,65),(40,42,66)], [(1,45,15),(2,16,46),(3,47,9),(4,10,48),(5,41,11),(6,12,42),(7,43,13),(8,14,44),(17,30,72),(18,65,31),(19,32,66),(20,67,25),(21,26,68),(22,69,27),(23,28,70),(24,71,29),(33,56,59),(34,60,49),(35,50,61),(36,62,51),(37,52,63),(38,64,53),(39,54,57),(40,58,55)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,6),(4,8),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(17,60),(18,57),(19,62),(20,59),(21,64),(22,61),(23,58),(24,63),(25,33),(26,38),(27,35),(28,40),(29,37),(30,34),(31,39),(32,36),(49,72),(50,69),(51,66),(52,71),(53,68),(54,65),(55,70),(56,67)]])
66 conjugacy classes
class | 1 | 2A | 2B | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 8C | 8D | 12A | ··· | 12J | 12K | ··· | 12R | 24A | ··· | 24P | 24Q | 24R | 24S | 24T |
order | 1 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 54 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 54 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 18 | 18 | 18 | 18 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | S3 | D6 | M4(2) | C4×S3 | C8⋊S3 | S32 | C6.D6 | C12.31D6 |
kernel | C33⋊9M4(2) | C32×C3⋊C8 | C3×C32⋊4C8 | C4×C33⋊C2 | C33⋊5C4 | C2×C33⋊C2 | C3×C3⋊C8 | C32⋊4C8 | C3×C12 | C33 | C3×C6 | C32 | C12 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 5 | 2 | 10 | 20 | 4 | 4 | 8 |
Matrix representation of C33⋊9M4(2) ►in GL8(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
64 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[64,19,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72],[1,18,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72] >;
C33⋊9M4(2) in GAP, Magma, Sage, TeX
C_3^3\rtimes_9M_4(2)
% in TeX
G:=Group("C3^3:9M4(2)");
// GroupNames label
G:=SmallGroup(432,435);
// by ID
G=gap.SmallGroup(432,435);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,36,58,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^5>;
// generators/relations